Nguồn gốc Từ trường Trái Đất

Bài chi tiết: Thuyết dynamo

Từ trường Trái đất được cho là sinh ra bởi các dòng diện trong vật liệu dẫn điện của lõi, tạo ra bởi các dòng đối lưu do nhiệt thoát ra khỏi lõi. Tuy nhiên, đây là một quá trình phức tạp, và các mô hình máy tính có thể dựng lại một vài đặc điểm của nó chỉ được phát triển trong vài thập niên gần đây.

Lõi Trái đất và thuyết địa động lực

Hình minh hoạt mối tương quan giữa chuyển động của chất lưu dẫn điện, được điều khiển bởi lực Coriolis, và từ trường do chuyển động sinh ra.[42]

Trái Đất và hầu hết các hành tinh trong Hệ Mặt Trời, cũng như Mặt Trời và các sao khác, tất cả đều có từ trường do quá trình chuyển động của các chất lưu dẫn điện.[43] Từ trường Trái Đất sinh ra từ lõi của nó. Đây là khu vực chứa các hợp kim sắt có bán kính khoảng 3.400 km (bán kính trái đất là 6.370 km). Phần lõi này chia thành lõi trong rắn với bán kính 1.220 km, và lõi ngoài lỏng.[44] Sự chuyển động của chất lưu ở lõi ngoài được điều khiển bởi dòng nhiệt thoát ra từ lõi trong, dòng nhiệt này khoảng 6.000 K (5.730 °C; 10.340 °F), đến ranh giới lõi-manti nhiệt độ đạt 3.800 K (3.530 °C; 6.380 °F).[45] Mô hình dòng chảy được thiết lập bởi sự tự quay của Trái Đất và sự có mặt của lõi trong rắn.[46]

Cơ chế Trái Đất sinh ra từ trường được nêu trong thuyết dynamo.[43] Từ trường được tạo ra bởi mạch hồi tiếp: các mạch điện tạo ra các từ trường (Định luật Ampère); khi từ trường thay đổi tạo ra một điện trường (Định luật Faraday); và các trường điện và từ tác động một lực lên các điện tích chuyển động thành dòng ở dạng dòng điện (Lực Lorentz).[47] Những tác động này có thể được kết hợp ở dạng phương trình vi phân từng phần cho từ trường được gọi là "phương trình cảm ứng từ":

∂ B ∂ t = η ∇ 2 B + ∇ × ( u × B ) {\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\eta \nabla ^{2}\mathbf {B} +\nabla \times (\mathbf {u} \times \mathbf {B} )}

...với u là vận tốc của chất lưu; Btrường từ B; và η=1/σμ là độ khuếch tán từ, tỉ lệ nghịch với độ dẫn điện σ và độ từ thẩm μ.[48] Thuật ngữ ∂B/∂t là đạo hàm theo thời gian của từ trường; ∇2 là Toán tử Laplace và ∇× là rot.

Số hạng đầu tiên phía bên phải của phương trình cảm ứng từ là số hạng khuếch tán. Trong chất lưu tĩnh, từ trường giảm và bất kỳ điểm nào của từ trường lan tỏa ra ngoài. Nếu dynamo của Trái Đất ngừng hoạt động, phần lưỡng cực sẽ biến mất trong vài chục ngàn năm.[48]

Trong một dây dẫn hoàn hảo (σ = ∞), sẽ không có sự khuếch tán. Theo định luật của Lenz, bất kỳ thay đổi nào trong từ trường sẽ bị phản đối ngay lập tức bởi các dòng điện, do đó dòng chảy qua một thể tích chất lỏng nhất định không thể thay đổi. Khi chất lỏng di chuyển, từ trường sẽ đi cùng với nó. Định lý mô tả hiệu ứng này được gọi là định lý đóng băng trong trường. Ngay cả trong một chất lỏng có độ dẫn hữu hạn, trường mới được tạo ra bằng cách kéo dài các đường trường khi chất lỏng di chuyển theo cách làm biến dạng nó. Quá trình này có thể tiếp tục tạo ra trường mới vô thời hạn, phải không khi từ trường tăng cường độ, nó chống lại chuyển động của chất lỏng.

Chuyển động của chất lỏng được duy trì bởi sự đối lưu, chuyển động được điều khiển bởi độ nổi. Nhiệt độ tăng dần về phía trung tâm Trái đất và nhiệt độ cao hơn của chất lỏng xuống thấp hơn khiến nó nổi lên. Độ nổi này được tăng cường bằng cách tách hóa học: Khi lõi nguội đi, một số sắt nóng chảy đông cứng lại và được mạ vào lõi bên trong. Trong quá trình, các yếu tố nhẹ hơn bị bỏ lại trong chất lỏng, làm cho nó nhẹ hơn. Điều này được gọi là đối lưu thành phần. Hiệu ứng Coriolis, gây ra bởi vòng quay hành tinh tổng thể, có xu hướng tổ chức dòng chảy thành các cuộn thẳng hàng dọc theo trục cực bắc-nam.

Một máy phát điện có thể khuếch đại từ trường, nhưng nó cần một trường "hạt giống" để bắt đầu. Đối với Trái đất, đây có thể là một từ trường bên ngoài. Đầu tiên trong lịch sử, Mặt trời đã trải qua giai đoạn T-Tauri, trong đó gió mặt trời sẽ có một từ trường có cường độ từ trường lớn hơn gió mặt trời hiện tại. Tuy nhiên, phần lớn trường có thể đã được sàng lọc bởi lớp phủ của Trái đất. Một nguồn thay thế là dòng điện trong ranh giới lõi-lớp phủ được điều khiển bởi các phản ứng hóa học hoặc sự thay đổi độ dẫn nhiệt hoặc điện. Những hiệu ứng như vậy vẫn có thể cung cấp một sai lệch nhỏ là một phần của các điều kiện biên cho geodynamo.

Từ trường trung bình trong lõi ngoài của Trái đất được tính là 25 gauss, mạnh hơn 50 lần so với từ trường ở bề mặt.

Các mô hình số

Mô phỏng địa động lực học đòi hỏi phải giải quyết một cách số lượng một tập hợp các phương trình vi phân một phần phi tuyến cho từ trường nam châm (MHD) của bên trong Trái đất. Mô phỏng các phương trình MHD được thực hiện trên lưới điểm 3D và độ mịn của lưới, phần nào xác định tính thực tế của các giải pháp, bị giới hạn chủ yếu bởi sức mạnh của máy tính. Trong nhiều thập kỷ, các nhà lý thuyết đã giới hạn để tạo ra các mô hình máy tính động học trong đó chuyển động của chất lỏng được chọn trước và ảnh hưởng đến từ trường được tính toán. Lý thuyết động lực học chủ yếu là vấn đề thử các dạng hình học dòng chảy khác nhau và kiểm tra xem các dạng hình học đó có thể duy trì một động lực học hay không. [52]

Các mô hình máy phát điện tự ổn định đầu tiên, mô hình xác định cả chuyển động của chất lỏng và từ trường, được phát triển bởi hai nhóm vào năm 1995, một ở Nhật Bản [53] và một ở Hoa Kỳ. [1] [54] Loại thứ hai nhận được sự chú ý vì nó tái tạo thành công một số đặc điểm của trường Trái đất, bao gồm cả đảo ngược địa từ. [52]

Dòng điện trong tầng điện ly và từ quyển

Dòng điện gây ra trong tầng điện ly tạo ra từ trường (vùng động lực tầng điện ly). Một trường như vậy luôn được tạo ra gần nơi khí quyển gần Mặt trời nhất, gây ra những thay đổi hàng ngày có thể làm chệch hướng từ trường bề mặt tới một độ. Các biến thể điển hình hàng ngày của cường độ trường là khoảng 25 nanoteslas (nT) (một phần vào năm 2000), với các biến thể trong vài giây thường là khoảng 1 nT (một phần trong 50.000).

Tài liệu tham khảo

WikiPedia: Từ trường Trái Đất http://www.epm.geophys.ethz.ch/~cfinlay/publicatio... http://21stcenturysciencetech.com/translations/gau... http://blackandwhiteprogram.com/interview/dr-dan-l... http://archive.cosmosmagazine.com/news/solar-wind-... http://news.nationalgeographic.com/news/2004/09/09... http://news.nationalgeographic.com/news/2009/12/09... http://www.nature.com/nature/journal/v374/n6524/ab... http://www.nature.com/news/2005/050228/full/news05... http://www.nytimes.com/2004/07/13/science/13magn.h... http://www.sciencedaily.com/releases/2012/10/12101...